SCHIZOPOD CRUSTACEANS IN THE U. S. NATIONAL MUSEUM. THE FAMILIES LOPHOGASTRIDE AND EUCOPIIDE.

By Arnolid E. Ortmann, Of the Carnegie Museum, Pittshurg, Pennsylvania.

INTRODUCTION.

The papersubmitted herewith forms the first installment of a series of articles describing the Schizopod collections in the United States National Museum. It treats of the families Lophogastridæ and Eucopidie, which consist almost exclusively of deep-sea forms. The material at hand, chicfly in the genus Gnathophuensie, is so rich that it has been possible to prepare a complete revision of that genus, and it has been found that some characters, which were regarded hitherto as of specific value, are but differences of age in the same species. This made it necessary to prove the changes of these characters with age, and consequently, the discussion of some of the species is somewhat lengthy.

Other families of the Schizopods will be taken up successively, and the results will be published similarly, as the time at the disposal of the writer will permit.

Family LOPHOGASTRIDE G. O. Sars.

1. LOPHOGASTER TYPICUS M. Sars.

Ortmann, Bull. U. S. Fish Comm. for 1903, Pt. 3, 1905, p. 967 (see for complete list of literature).-Stebbing, South African Crustacea, Pt. 2, Cape of Good Hope Dept. Agric. 1902, p. 43.-Holt and Tattersall, Rep. Fisher. Ireland, Pt. 2, Append., IV, 1905 , p. 141.
Of this species, material was available from two regions, from which it was not hitherto known, namely, the western Atlantic (coast of C'nited States and Culf of Mexico), and the western Pacific (Japan).

The specimens from the western Atlantic are divided into three sets: One from the coast of the Carolinas (Albatross stations Nos. $2314,2601,2602$), consisting of together 10 males and 3 females; the second from the Gulf of Mexico (Stations Nos. 2399, 2401, 2403).
together.9 males and 1 female; the third from Key West (Fishl Hown stations Nos. 72s2, 7283,7286).
The northern specimens, from the Carolinas, compare with the European (and sonth African) form in the following particulars:
(1) The rostrum is longer, generally about as long as the peduncte of the antennula, lout in two specimens (males) it is shorter than this peduncle, although longer than in the typieal form; and in 2 females from Station No. 260^{2} it is slightly longer than this pedmele but distinetly shorter than the antemal scale.
(2) The antennal scale has on the outer margin a greater number of teeth; the normal number seems to he 6 or 7 ; five specimens have 6 teeth on both sides; two specimens have 6 on one side, and 7 on the other: one female has 7 teeth on both sides. Besides, there is one specimen with 6 teeth on one side, and three with 7 teeth on one side, while the other side could not be determined owing to its damaged condition. Finally, one female has 6 teeth on the right, and 5 on the left side. Thns 5 to 7 are the numbers found, 5 once, 6 fonteen times, 7 seven times.
(3) In the number of tateral teeth of the telson, these specimens agree well with the European form, the nsual number being 3 on each side. There are, however, a few exceptions. Four specimens have 3 teeth on one side, but only 2 on the other; one specimen has 3 teeth on one side and 4 on the other (female, Station No. 2602), and one (male, Station No. 2601), has 1 spine only on each side, placed at a different lerel, the right one being more proximal than the left one.

Those from the Mexican Gulf have the following characters:
(1) The rostrum is in one case only shorter than the peduncle of the antemula; in seren specimens it is longer than this pedmele, but shorter than the antemal scale; and in one case (Station No. 2399) it is about as long as the antennal seale (in the remaining individnal it is damaged). Thus the average slightly exceeds that of the northern set.
(2) The antemal scale has in seven cases 6 teeth on both sides; in one case there are 6 on one, 7 on the other side; and in two cases there are 7 teeth on both sides. This agrees well with the condition found in the northern set.
(3) The telson has uniformly 3 tecth on both sides, with one exception, where there are 2 on the right and 3 on the left. This seems to be the normal condition in Atlantic specimens.

The specimens from Key Went (6 males, 2 females), collected by the U. S. Burean of Fisheries vessel Fish Hawk, agree very well with the Gulf form. The rostrum is as long as the peduncle of the antenmula, except in two cases, in which it is slightly longer. The antemnal scale has generally is teeth, but in two specimens there are 7 on the right side. The telson has ? teeth on each side, but in two specimens there are 2 teeth on one side and 3 on the other.

The largest West Atlantic specimen is a male from Station No. 2f01, measuring 29 mm . The few females at hand are all small and measure between 16 and 18 mm .

A series of fifteen specimens, 9 males and 6 frmales, from six stations off Honshu Island, Japan, Was examined. None of them were found to be smaller than 21 mm . ; the females were between 21 and 27 mm ., and two of them ($\because 4$ and $\because \frac{7 \mathrm{~mm}}{\mathrm{~m}}$.) Were gravid; the males being between 22 and 32 mm. They have the following charaters:
(1) The rostrum is comparatively long, eren longer than in the West Atlantic form, which in turn exceeds the arerage found in the Hawaiian. There is not a single individual in which it is shorter than the peduncle of the antemula. In three (2 males and 1 female) it is about as long as this peduncle, while in all others it is distinctly longer. Generally it is shorter than the scale of the antenna, but in a few eases it is of equal length.
(2) The antennal scale has generally only 3 teeth on the onter margin; in one individual (male, 31 mm .) there are 2 on the right and 3 on the left side, and in another one (male, 27 mm .) the reverse is the case. Thus these specimens represent the opposite extreme of that seen in the Went Atlantic form. The Hawaiian form is intermediate with 3 to 5 teeth.
(3) The telson generally has 2 spines on the lateral margins on each side. Four specimens, however, constitute an exception, having 1 spine on the right side and 2 on the left.

The above records show that these characters can not be regarded as of specific value. Taking the Emropean and South African form as the type, the West Atlantie specimens agree with them in the spines of the telson, while all the Pacific specimens possess the tendeney to reduce their number. The rostrum is shortest in the typieal form, but in all others shows a tendency to become longer; the Hawaiian form comes close to the typical in this respect, while both the West Atlantic and the fapanese differ more distinetly. In the number of teeth of the antennal seale the typical form is intermediate (5); the West Atlantic form varies in one direction (6 to 7), while the Pacific raries in the other: the Ilawaian with 3 to 5 teeth is more closely allied to the typical form than the Japanese, which has only or 3 teeth.

It is very likely that intermediate localities, when found, will tend to conneet these forms more closely, and it wonld be interenting to know particulars about these connecting links.

Loculities represented in the I. S. Nutional Musenm.
fiom U. s. bureau of fisheries steamer Albretrons stations.
2314. - t males. Between Charleston and Samanah, off South Carolina coast: 159 fathoms.
2399.- 1 male. Culf of Mexico; 196 fathoms.
2401. - 1 male. Gulf of Mexico; 142 fathoms.
2403. - \ddagger males, 1 female. Gulf of Mexico: 88 fathoms.
2601. - males. Between Cape Hatteras and Charleston, off North Carolina coast: 107 fathoms.
2602.-1 male, 2 females. Between Cape Hatteras and Charleston, off North Carolina coast; 124 fathoms.
$3707 .-1$ female. Ofl Honshu Island, Japan: 63 to 75 fathoms. $3714 .-1$ male, 1 female. Off Honshu Island, Japan; 48 to 60 fathoms. 3715. - + males, 1 female. Off Honshu Island, Japan; 68 to 65 fathoms. 3717.-1 male. Off Honshu Island, Japan; 100 to 63 fathoms. 3718.-3 males, 2 females. Off Honshu Istand. Japan: 65 fathoms. 3740 . - 1 female. Off Honshu Island, Japan; 65 fathoms.
from l. s. bureau of fisheries steaner Fish Huuci stations.
7232. - 4 males, 2 females. Gulf Stream, ofl' Key West; 109 fathoms. 72s3.-1 male. Gulf Stream, off Key West; 127 fathoms. 72s6. - 1 male. Gulf Stream, off Key West; 133 fathoms.

Locelities preciously recorded.-Norway, Shetland Islands, Ireland, Bay of Biscay, Mediterranem, Cape of Good Hope, $20-300$ fathoms; off Cape St. Blaize, South Afriea, to fathoms; Hawaiian Islands (Pailolo Chamel, Molokai and Laysan Islands), at about the same depth.

2. LOPHOGASTER SPINOSUS, new species.

Plate I, figs. 1 (, $1 b$.
Type.-Cat. No. 1146t, U.S.N.M. Female. U.S. Bureau of Fisheries steamer I Ibutrosss station No. 2666 . between Bahamas and Cape Fear, North Carolina. Latitude $30-47^{\prime} 30^{\prime \prime}$ north; longitude $79^{\circ} 49^{\prime}$ west: depth, שī0 fathoms.

Althongh huilt in the main according to the pattern of the typical and hitherto only known species of the gemns, this species differs from the latter in several well-marked characters.
(1) Rostrum greatly elongated, almost as long as the carapace in the median line. It exceeds the antemal scales, which also are greatly elongated, and it is without teeth or denticulations. It is directed forwarl, and is ahmost straight.
(2) Antemal scale greatly elongated and lanceolate; its onter margin is formed ley a strong rib, which extends into a long spine; the imer, lamellar part is much shorter, and reaches only to about the distal third of the spine. Outer margin of the spine with 9 spiniform ser-
rations on right side, and with 10 on the left; and, further, there is a similar sermation on the inner margin, just above the upper end of the lamellar part, and opposite to the second tooth (counted from the tip)) of the onter margin.
(3) Lateral wings of carapace produced posteriorly into a long spine on each side, which is almost one-third as long as the carapate (excluding rostrum).
(t) Sixth abdominal segment with a subdorsal spine directed straght backward on posterior margin, at the base of the telson, on each side.
(5) Telson slightly more elongated than in L. typicus, and with five marginal spines on each side. The terminal spines are similar to those of L. typ $\dot{i} u$: two pairs, and between them at the posterior termination a serrated crest, which, howerer, has only four teeth. (The tip of the telson is not very well preserved in the type, as the two outer, smaller terminal spines are broken off.)

Measurements.-Totallength: 39 mm . ; length of rostrum (in front of eyes): S; length of carapace along dorsal line, including rostrum: 19.

GENUS GNATHOPHAUSIA Willemoes-Suhm.

KEY TO THE SPEGES OF GNATHOPHAUSIA:
a. Antennal scaue small, not jointer, no strong rib terminating in a spine on onter margin; onter margin serrate. Epimera of sixth abominal segment united ventrally, forming together a corliform, concave plate, incised at apex. Dorsal keel of carapace interrupted. Lower lateral keel not curving upwarl hehind, but terminating in aspine at the postero-inferior angle. Branchiostegal lobe generally with a well-developer spine (sometimes obsolete). Maxillipeds with a small exopodite."
b. Both lappets of the epimera of the second to fifth abolominal segment pointed and upiniform. Antennal scale subovate, apex shortly pointed.
c. Rostram and all spines of carapare eomparatively short or olsolete....inyens c^{\prime}. Rostrum and spines of carapace well developed and comparatively long.
b^{\prime}. Anterior lappet of the epimera of the first to the fifth abdominal segment small, rounded; posterior lappet pointed and spiniform. Antennal scale sublanceolate, tapering to a sharp, spiniform point . . yigas (+ dreprouephora.) u^{\prime}. Antemal scale large, of usual form, jointed at the extremity, outer margin formed by a strong rib terminating in a spine. Epmera of sixth alofominal segment not confluent ventrally.
b. Lower latera! keel of carapare not eurving mp behind, but terminating in a spine on the postero-inferior angle of the carapare. Median keel of carapace interrupted, with spiniform serrations. Merlian line of abdominal segments with strong spines. Upper lateral keel of carapace wanting. Two epimeral spines on each side of the anterior section of sixth abdominal segment Maxillipers with exoportite grucilis
b^{\prime}. Lower lateral keel of carapace eurving up behind; no spine at postero-inferior angle of carapace. Median keel of carapace not interrupted, withont piniform serrations. Median line of abdominal segments-if armed at all-only with posteriorly projecting, small spines. Upper lateral ked of carapace present, very rarely wanting. Maxillipeds without exppodite.
c. Two epimeral spines on each sile of anterior section of sixth abdominal segment. Upper lateral keel of carapace present. Antemal spine obsolete. Branchiostergal lobe with a well-marked, triangular spine. Spine of outer margin of antennal scale projecting considerably beyond terminal lobe, serrated on both margins
longispina
c^{\prime}. One epimeral spine on each side of anterior section of sixth abdominal segment. Antemnal spine more or less distinct. Branchiostegal lobe withont spine, generally romderl, rarely angular. Spine of onter margin of antennal scale not, or only slightly, projecting beyond terminal lobe.
d. Upper lateral keel of carapace present.
e. Abdominal segments dorsally slightly keeled, with small, posteriorly projecting spines. Epimera of five anteriorabdominal segments pointed posteriorly. Branchiostegal lobe romnded.
f. Carapace not sudilenly constricted anteriorly, and forming no shonlder.

Branchiostegal lobes moderately developed zö̈ra
f^{\prime}. Caramace suddenly constricted anteriorly, forming a distinct shoulder in front of the anterior ends of the upper lateral keels. Branchiostegal lobe greatly expanded .-................................. scapulums
e^{\prime}. Abdominal segments dorsally not keeled, withont spines. Epimera of five anterior aldominal segments rounded posteriorly. Branchiostegal lobe slightly angular - affinis
d^{\prime}. Upper lateral keel of carapace wanting. Branchiostegal lobe rounded or angular, but withont spine. Abdominal segments dorsally without keel, hat posteriorly with a small, depressed, triangular projection. Epimera of five anterior abrlominal segments ending in small points posteriorly
elegens

3. GNATHOPHAUSIA INGENS (Dohrn).

Lophoguster ingens Domme, Zeitschr. wiss. Zool., XX, 1870, p. 610, pl. xxxi, figs. 12-14.
Gnathopheusin ingens (7. O. Sars, Forh. Nelsk. Christiania, 1883, No. 3; Rep. Challenger, XIlI, 1885, p. 30, pl. 11.
I have never seen this species. It is founded upon a rery old female, sexually matme, and a similar female has served as the basis for Sars's description. It is very closely allied to Cr. culcurate, and I strongly incline to the opinion that it will prove to be G. calcarata, representing an old female of that species, in which case it will be called Gr. imgen., the name culcurata becoming a synonym.
(r. ingens especially agrees with (r. calcarater in the following important characters:
(1) General form of body, and arrangement of keets and spines of (al゙:!):ace.
(2) Sculpture and amature of athomen. especially as the epimera of the tive anterior segments are identical in both forms.
(3) Shape of antemal scale.

It ditfers from G^{\prime}. calcurata in the following respects:
(1) In the shorter rostrum and the inferior development of all spines of the carapace, the supraorbital spine being even wanting, the branchiostegal spine being obsolete.
(2) In the absence of the two pairs of oblique keels on the superior face of the cartpace.
(3) In the shape of the rentral epimeral plate of the sixth abdominal segment, which, althongh closely approaching the shape seen in the largest specimens of $(r$. calcarata, hats the tips separated and bifid, the inner spine being slightly longer.

The first of these characters can not be regarded as of specific value. Dohrn's specimen measured 155 mm . Strs's specimen 157 mm . The largest f_{f}. culcuratu at hand (and ever observed) measures 11.5 mm ., and consequently, is considerably younger than the known sperimens of G. ingens. Now, as shown below, it is a general rule in this genus that all the spines of the carapate and the rostrum decrease in relative size with advancing age, and thus it is easy to believe that the slight development of these spines in G. ingens is due to old age only. In fact, if we imagine that G^{\prime}. culcaratu grows larger and that the spines decrease proportionally, we would obtain, at about the size of 150 to 160 mm ., the conditions found in G. ingens.

As to the second differential character, the lack of the two oblique keels on the upper face of the earapace, this may have been overlooked by Dohrn and Sars. In fatet, these two kecls were orerlooked by Sars in G. culcuratu; at any late, they are not mentioned in the deseription, althongh one of the figures (Plate IV, fig. 2) shows traces of them.

The third character offers only a slight difference from the condition seen in large specimens of G. calcuratu. In the latter the tips of the epimeral plate of the sixth abdominal segment are in contact in the median line, while in G. ingens they are separated, according to Sars's fig. 6 on Plate II. Moreover, in (f.calcaratu the outer spine of the bifid end of each of the tips is greatly longer than the inner, while in G. ingens the inner spine is slightly the longer.

At present this last character remains the only one upon which G. infens and G. celcermter can be separated, and it is not improbable that further material will demonstrate that one form pases into the other when we consider the changes in the sixth epimeral plate in its development from the young (r. culcaiuta to the old.

Distribution of G. ingens.- Off the west coast of Africa: ". Latos." depth not recorded (Dohrn). Near Aru Island, Arafura Sea (New Guinea), 800 fathoms (Sars).

4.
GNATHOPHAUSIA CALCARATA G. O. Sars.

Plate I, figs. $2(1,2)$.

Gnathophausia celcarala (F. O. Sars, Forl. Selsk. Christiania, 1883, No. 5; Rep. Challenger, XIIl, 1885, 1. 35, pl. iv.-Ormane, Bull. U. S. Fish Comm. for $190: 3$, I't. 3,1905, p. 968.
Ginathophansial bengulensis Wood-Masos, Ann. Nat. Hist. (6), VIII, 1891, p. 269.
Spectitic churncters.-Anide from the group character's (see "in the key), the following are to be considered as of specific value:
(1) The suborate, not lanceolate, shape of the antemal seale.
(2) The prescuce of two pairs of oblique keels on the upper surface of the carapace.
(3) The shape of the epimera of the second to fifth alodominal segment, both lappets of which are pointed and spiniform.
(t) The bifid points of the epimera of the sixth abdominal segment, with the inner point much shorter than the outer (in old speeimens only).

Dexcription- Carapace with dorsal, upper, and lower lateral keels. Dorsal keel interrupted in the middle part. Lower lateral keel ending in a spine at the postero-inferior angle of the carapace. On upper face of carapace, between median and upper lateral keels, there are two oblique keels on each side, converging posteriorly, the anterior pair ruming toward the anterior end of the posterior section of the dorsal keel, hut not joining it; the posterior pair rumning almost parallel to the first pair, their hind ends not joining the dorsal keel. Rostrim of various lengths, according to age, about as long as the rest of the carapace in rery young specimens. In older ones, the part in front of the supraocular spines is ahont one-third of the length of the rest of the carapace. Supracular spines very small, sometimes obsolete. Antenmal spines small, but well developed, the most constant spines in size. Branchiostegal spines quite large and well developed in young specimens, and longer than the antemal spines. In old specimens they are not only relatively, but absolutely smaller. and become shorter than the antemal spines. Postero-dorsal spine of varions lengths, according to age, lout the variation is not very great; it is always well developed, hat shorter than the postero-inferior spines. Spines of postero-inferior angle greatly varying in length with age; very long, almont half the length of the carapace (excluding the rostrum) in young specimens, and distinetly diverging and spreading out in a posterolateral direction. In old speeimens they are much shorter, even absolutely shorter, and are as short as about one-seventh of the carapace (without rostrum); they are not divergent, but directed straight backward. Branchiostegal, postero dorsal, and postero-inferior spines, when well developed, with more or less distinct serrations, which become indistinct with age, and even disappear entirely.

Antennal scale small, subovate. pointed; point not produced. Onter margin serrate, serrations three to six (sometimes different on right and left sides), the distal serration at a certain distance from the tip of the scale, and the margin between this smration and the tip either straight or slighty emarginate, thus giving a more or less truncato appearance to the seale.

Abdomen sculptured by a distinct transserse groove near the posterior margin of each of the tive anterior segments: there is a similar but fainter groove near the anterior margin. The posterior groore is continned down to the epimeral lappets, and here its antrrior edge is marked on an elevated ridge. This seupture is seen clearty only in well-preserved specimens, and sometimes there are trates of a subdorsal longitudinal keel on each side. Also a blunt median keel is sometimes indicated. The "pimera of the serond to the fifth segment consist of two lappets, which are both produced and acntely pointed, the posterior being somewhat longer than the anterior. The anterior lappet of the first segment is considerably shorter than the spiniform posterior lappet, and is not produced into a spine, but bhuntly pointed or even obtuse. The epimera of the sixth abdominal segment mite ventrally to form a concave, cordiform plate, which, in old individmals, is produced beyond the posterior margin of the sixth segment. In young individuals the right and left lappets are short and simply pointed, and separated from one another by a shallow emargination. With increasing age they become mach elongated, are separated by a narrow slit, and the tips become bifid, a second point dereloping on the imner side, which is always much shorter than the outer point. In old individuals the inner tips are in contact in the median line and may eyen overlap.

Fariations with age. - I had an excellent opportunity to study this species, as orer 40 individuats in good condition were arailahle, of very different sizes and ages, ranging from te $11 m$. to about 115 mm . The three first-named specific characters are always present, but the fourth is observed only in older individuals. The spines of the carapace are very variable in their derelopment according to age and generally they are comparatively longer in yomg specimens and shorter in old ones. Sometimes, in the cases of the branchiostegal and postero-inferior spines, eren the absolute length in older specimens is inferior to that in younger ones. This seems to be a general rale in this genus, for it was discovered by the writer in another species of the genus, (ir. lomgispina. "

Another important variation, due to age, is found in the ventral epimeral plate (see Plate I, tigs. $2(t-2 f)$. The smallest individual (4 ? mm., Station No. 362 , tig. 2 (1) has this plate rery short: the two tips
are simply pointed and widely separated by a satlow and wide incision. With advancing age the tips of this phate are more produced (specimen of 5 mm. Station No. 2980, fig. vh, and specimen of (is mm., Station No. 2929 , fig. $\left.\bullet^{(}\right)$, a slight angulation appears on the inner side of the tips, which are not so widely separated, the incision becoming narrower and longer. Farther on the tips are gradually produced beyond the posterior margin of the segment (specimen of $S 1 \mathrm{~mm}$., Station No. 291:, fig. .2d, and apecimen of 91 mm ., Station No. 4389, fig. .2e), the imer angle develops into a distinct spine, which is shorter than the tip, and the two tips approach each other closely, finally coming in contact at the level of the smaller imner point. The incision becomes long and narrow, slit-like. In the largest specimen at hand (115 mm., station No, $36 \pi 0$, tig. $\because f f^{\prime}$) the two tips approach so closely to each other that the inner point of the left side overlaps that of the right.

Identity of (r. bengulensis with 1i. culcaratu. - Wood-Mason gives the following differential characters for his G. bengalensis:
(1) "Carapace covers the whole of the first and part of the second abdominal somite," while in (i. culcuratu the carapace does not corer the trunk entirely.
(2) "The antennal, branchiostegal, and postero-inferior spines appear fuite smooth to the naked eye, being only obsoletely or microseopically serrated."
(3) "The supraorbital spine is readily distinguishable by its shape from the rostral denticles."
(t) "The upper lateral keels are strongly roof-shaped."
(5) "The oblique suldorsal keels are more pronounced."
(6) "Antennal scale more hroadly emarginate at the apex."
(\bar{i}) "The pleural lappets of the last abdominal somite are terminated by two very meynal spines (of which the outer is longer and sharp, and the inner short and blunt), and are separated from one another posteriorly in the mid-ventral line by a long and narrow incision."

Length of Wood-Mason's sperimen (female with a rudimentary brood-pouch): 91 mm .

Of the characters, the following may he remarked:
(1) It depends entirely on the state of preservation how much of the trunk or the abdomen is covered by the carapace. In my specimens, there are the following limits: The minimum, when only the trunk is covered, the maximum, when the whole of the first and the anterior part of the second abdominal segment is covered. The latter calse corresponds to Wood-Mason's species, hut, as it happens, this one is found in a small individual (55 mm . Station No. 2384), which is, in all other resperts, and especially in the rentral epimeral plate, a typical culcuratu. In many of my specimens, in which the state of preservation permits, they being rather flabby, I am able at will to change the degree of covering of the abdomen, by simply pulling out or pushing in the latter.
(2) The serrations are to my eyes, which are normal-sighted, always invisible, and I have to use a lens to discover them. Some-
times, rhiefly in old individuals, they are actually wanting. Their presence or absence caunot constitute a specific character.
(3) The supraorbital spine is sometimes distinctly visible, sometimes entirely obsolete. If present, it is always marked by its position. Even when developed, it is so small that its presence or absence camot be of specific value.
(t) What Wood-Mason means by "roof-shaped" upper lateral keels, I camnot imagine.
(5) The oblique dorsal keels are also found in Sars's species; they are slightly indieated in his fig. 2 (chiefly the posterior pair, which is most important). In poorly preserved, flabby specimens, which have undergone much rough handling, they are sometimes indistinct. They are present in all my individnals, and hence this character can not be adeepted as constituting a difference between bengalensis and colcarata.
(i) The degree of emargination or truncation of the antennal seale offers variations, as is already indicated in Sars's figures (Plate IV, figs. $2,4,5)$. I have called attention to this fact in comection with the Hawaiiam material ", whin is further confirmed by the present material. A real emargimation (i.e., a concave marginal line) is comparatively rare; generally there is a truncation, with the marginal line between tip and first tooth straight.
(7) The description of the epimeral plate given by Wood-Mason corresponds exactly to what we see in my figs. 叉u to $\because f$, with the exception that the inner tip of each epimeral lappet is sharp, not blunt. In younger specimens, however, it is blunt (see my figs. 2 , and $2(c)$. Thus this character agrees well with the assumption that (r. bengolensis is an older and larger G. culcuruta.

Thus of the seven characters given by Wood-Mason for G. bengalensis, six are not actual diflerences, and one, the fouth, is unintelligible. The only real difference from Sars's description and figure is fonnd in the epimeral plate of the sixth abdominal segment: but this organ, as shown, changes its form with age, and (r.bengulensis is a rather large individual (91 mm .). Specimens from my material of the same size present an epimeral plate (see fig. $\bullet c$ c) closely corresponding to WoodMason's description.

Sar's had two specimens of this species; the large one was 9 mm. and to it belong the figures of the whole animal (slightly enlarged, Plate IV, figs. 1, 2). The carapace of the smaller one (68 man.) is figured in his fig. 3 . Sars does not say from which indwidual the other figures are taken, hat it seems from the latter. Then has figure of the epimeral plate (fig. 6) belongs to this smaller individual. The same plate of an individual of the same suze (68 mm .) is figured in my

[^0]Proc. N. M. vol. xxxi-06-3
lig．兰c，and shows a rather more advanced stage，although it comes bery dose to sarsis figure，and diflers considerably from the epimeral phate of larem pecimons．sarss figure is ahout intermediate between my figures $2 \boldsymbol{Z}$ ，and 2 c，representing specimens of 5.5 and 68 mm ， respectively．

Šer in לi．culraruta．－．It is rather hard to distinguish male and female in this genus maless full－grown individuals are at hand．Old femates are readily recognized by the presence of marsupial lamella at the bases of the thomade legs．These lamellae＂are absent in the mate，but the male has，at the coxa of the last pair of leg＇，posteriorly and on each side，a small tuberculiform prominence，depresenting the outer sextal appendage．＂${ }^{\text {a }}$

In fomg and not quite adntt females，however，the marmpial lamella are comparatively small．In all the females of the present apecies．eren the largest，the lamellae were not fully dereloped，bemg short and narrow，not folding orer one amother in the median line，so that a＂marsupial ponch＂is not formed．In younger individuals these lamella are very smadl，hardly distinguishable．The smallest in which 1 found traces of them was 64 mm ．long（Station No． 2980 ）． In all smaller perimens there was no trace of them，and I was mable to make out whether they were young males or young fomales，as the male tuberete is gemerally not visible：in one individual only（ 5 ：mm． Station No．298（0）I thought I conld see ths tuberele．Lpward of the size of about（65）mm．it is possble to tell the males from the females， and it is remarkable that in the materal examined females were more abomdant，the be bing only 9 males，as aganst 23 females．It is remarkable．further，that the largest male was only 76 mm ．lone， and that all－perimens above this size were females（ 17 of them）． San＇s largest specmen of 98 mm ．is sat to be a mate，whale Wrood－ Mason＇s specimen（ 91 mm．）Wats a female．

The fact that eren the largest female did not hase the marsupial ponch completely dereloped indicates that they were not fully mature sexually．Thas makes it probable that they wonld have to develop further before bemg able to propatiate，and suggests the possiblity that they may attam the suze of（r．impons，m which case they might asoume the chatacter of the latter，thas makng C_{t} ．intenes the full－ grown female of this species．

Mont of the－pecomens were from the Eantern Pacitic（California region），only one young one（5．5 mm．Station No．23st）being from the Gulf of Mexico．＇Thas is distinguished by a rery longe rostrum and rety long postero－mferiorspines．The rostrom，in front of the supra－ ocular spmes，is slighty longer than the rest of the carapace（exclud－ mg the postere－dorsal fipme），and was erem longer than that，since the
tip is damaged. The postero-inferior spines are as long ats the distane from their base to the posterior base of the branchiostengal lobe (resembling closely Sa's's fig. 3 on Plate IV). (A specimen from Station No. 2980 , also 55 mm . long, has the rostrmu slightly shorter than the carapace, and the postero-inferior spines are only lalf ato long as in the specimen from the Mexican (Gulf.) For the rest, this specimen shows no differences; especially the epimeral plate agrees exactly with the specimen from Station No. 2950 , shown in my fig. 2b. The canapace covers the anterior part of the second abdominal segment, representing the maximum among my material, but this is probably due to the method of preservation. It has the appearance of having been put into strong alcohol at first, and consequently is much contracted. In slightly younger specimens from California the rostrum is relatively of the same length, and the postero-inferior spines at least approach the condition found in the (inlf specimen.

$$
\text { Localities represented in the } T \text {. S. Ahtional Mhesenn!. }
$$

FROM U. S. BUREAL OF FISHERIES STEANER Alb,
235t. - 1 young. (iulf of Mexico; 940 fathoms.
2839.-1 male, 1 female. Sinta Barlaura Islands, California; 41 to fathoms.
2919.-1 female. Off sonthern California; 984 fathoms.
2923.-1 female. Off southern California; 822 fathoms.
2929.-1 male. Off southern California; 623 fathoms.
2936. - 1 male, 3 females. Off southem California; 359 fathoms.
2980.-2 males, 1 female. Off southern Califormia; 603 fathoms.
2986.-1 young. Off Lower California; fist fathoms.
3127.-2 females. Off central California; 62 fathoms.
3348.-1 young. Off northern California; tan fathoms.

362 . - 1 young. West of Cortez and Tanner Banks; itif fathoms.
3670.-1 female. Monterey Bay; 581 fathoms.
4333. - 2 females. Off San Diego; 301 to 487 fathoms.
4334. - 1 male, 1 female. Off San Diego; 514 to 541 fathoms.
4335.-1 male. Off San Diego; 500 to 530 fathoms.
4336.-1 male, 1 female. Off San Diego: 518 to 565 fathoms.
4337. - 2 males, 1 female. Off San Diego; 617 to 680 fathoms.
4339.-1 female. Off San Diego; $2+1$ to 369 fathoms.
4351. - 1 male (!) young, 1 female. Off San Dicgo: ti3 to 488 fathom.
4353.-1 female. Off San Diego: 628 to 640 fathoms.
4354. - 2 young. Gff San Diego; 646 to 650 fathoms.
4379.-1 female. Off San Diego; 2.57 to 408 fathoms.
4350. - 1 female. Off san Diego; 530 to fils fathoms.
4381.-1 female. Off San Diego; 61s to 666 fathoms.
4382.-1 female. 1 young. Off San Diego; 642 to bi6f fathoms.
4389. - 1 male, 3 females. Off San Diego; 60s to 671 fathoms.
4390. 1 female. Off santa Catalina Islands, 1,350 to 2,182 fathoms. tios. - 1 male. Monterey Bay; 545 to 800 fathoms.

Prectoms records.-Arafura Sea, so0 fathoms (Sars): vicinity of Talan Island, s. of Mindanao, Philippines, 500 fathoms (Sars): Hawaian Islands: Kaiwi Channel, and vicinity of Kanai Island, $4+2-881$ fathoms (Ortmann); Bay of Bengal, 1748 fathoms (WoodMisison).
5. GNATHOPHAUSIA GIGAS Willemoes-Suhm。

Plate 1I, figs. 1h, $1 / 1$.

Ginuthophunsin gigus Whemoes-Sum, Trans, Linn. Soc. Lomlon, Zool. (2), I, 1875, p. 28, pl. .1., figs. 16, 17; ph. x, figs. 2, 3.-- (i. (). S.ire, Forll. Selsk. Christiania, 188\%, no. 4; Rep. Challenger, XIII, 1885, p. 33, pl. m.-Ortmaxn, Bull. U. S. Fish Comm. for 1903, P't. 3, 1905, p. 968.
This species is closely allied to G. calcurectu, but differs in certain constant characters. On account of the general resemblance of both species, it is hardly necessary to give a complete deseription of G. gigus, and it will suffice to mention the differential characters.

1. The arrangement of the keels of the carapace is essentially the same in both species, with the exception that the posterior oblique keels of the upper face are entirely wanting in G. gigas. The anterior oblique keels are present, occupying the same position as in G. culcerratu.
2. The spines of the carapace, in young specimens, are abont the same as in G. colcuratu, but the supraocular spine is more distinct, and as large as, or even larger than, the antemal spine. In older individuals all the spines are shorter than in G. culcaratie, with the exception of the supraocular, which is always distinct. Antemal spiņe small, branchiostegal generally slightly larger than the latter, postero-dorsal very short. The largest are the postero-inferior spines, which approach closely those of (r. calcurutu, although they are shorter in the average.
3. Antennal scale of G. gigus of slightly different shape; it is rather lanceolate, and not ovate, and the terminal point is longer and more tapering. The outer margin has four or five spiniform serrations, the anterior shar'p and strong, the posterior small and sometimes obsolete; these serrations, generally, are stronger than in G. calcaratu.
t. The epimera of the five anterior abdominal segments are different in both species. While in Gi. calcarecta both lappets of the second to fifth are strongly developed and are both spiniform, in G. gigus only the posterior lappet is produced and spiniform in all five segments, and the anterior is small and rounded (see Sars's fig. 1 on Plate III).
4. The ventral epimeral plate of the sixth alxdominal segment differs in both species in the larger individuals. In young specimens of G.
!igus. (see Plate I I, fig. 1", taken from a small individual, itf mm. long, Station No. 3:329), it is rather indifferent in shape, the two tips being widely separated by a very shallow incision; the two halves are not completely united in the merliunline. In larger individuals (see my fig. $1 b$ on Plate II, taken from an immature female about 90 mm . long, Station No. 2741) the tips are produced almost to the posterior margin of the segment, are more elosely approached, and separated by a narrower and longer incision. This incision, however, is wider than in specimens of corresponding size of G. culcurutu, and the tips on both sides are simple, not bifid as in (r). culcureta. However, Sars in his fig. 5 on Plate III draws an accessory terminal spine on the outer side of the left tip, while the right tip is entire. In our specimens I have never seen a condition like this. Our largest individual (Station No. 2860, 119 mm.) has the epimeral plate similar to that shown in our fig. 18 on Plate II, but it is slightly shorter and the outer margin is more evenly rounded, not angular, as in the latter.

The characters given under 1,3 , and 4 are most important, and according to my experience always hold good. Characters 2 and 5 are not so reliable, although they may prove to be of some help. With regard to the relative length of the rostrum and the spines of the earapace, again the fact will have to be stated that they all are comparatively longer in young specimens, as I have already pointed out. The epimeral plate of the sixth abdominal segment, although different from that of G. calcarata, is not very reliable on account of the marked changes in shape taking place during development.

Our largest specimen (Station No. 2860) is 119 mm . long; and 1 s a female with the marsupial pouch fully developed. Sars's specimen was a male, 142 mm . long. Our second largest individual (Station No. 2741) is an immature female about 90 mm . long, with small, but distinct marsupial lamella, which do not form a "ponch." All other specimens that have come under my observation are much smaller; the one from Hawaii is 50 mm ., another from Sitka Sound, Alaska, (to be described elsewhere) is 55 mm . long, and the present young one from Station No. 3329 is 56 mm . long. Ther have no traces of marsupial lamella, and have been regarded by me as males. But I am not quite sure as to this point. They may be young females. The two specimens from Station No. 3340 consist of two badly damaged earapaces with remmants of the trank, while in both the abdomen is entirely missing. However, they undoubtedly belong to this species, since characters 1 and 3 are elearly observable.

from d. a. bureau of fisheries steamer Albatrons stations.
2741.-1 femate adult. Between Cape Charles and Long Island; 852 fathoms.
2atio. 1 female. Between Sitka and Cohmbia River; 876 fathoms.
3329.-1 young. Bering Seat 339 fathoms.
3340.- : specimens (danaged). Between Unalaska and Kadiak; 695 fathoms.
Prenious records. - West of Azores, 2,200 fathoms (Sars); Hawaiian Islands, vieinity of Kanai Island; S50-767 fathoms (Ortmann).

Another locality is ofl Sitka Sound, Alaska, 922 fathoms.

6. GNATHOPHAUSIA DREPANEPHORA Holt and Tattersall.

Conathophonsia drepenephoru Holt and Tattersall, Rep. Fisheries Ireland, Pt.
2, Append. No. 4, 1905, 1, 113, pl. xvin; Ann. Nat. Hist. (7), X゙VI, 1905, 1. 9, 11. 11.

I have not seen this species, hat I strongly suspect that it is only the young stage of (i. yigues.

Holt and Tattersall create for it a separate section of the genus, uniting chanacters of the two main divisions; it agrees in every respect with our first division (" of the key), with the exception that the epimera of the sixth abdominal segment are said to be not united ventrally.

Disregarding the latter character, G. drepunephora agrees in every particular with (${ }^{\prime}$. yigus, making allowance for the much less adranced age of the former (only 39 mm .); thus the spines of the carapace, chiefly the postero-dorsal and the postero-laterals are much more developed relatively. Further, in (i. drepemephora, the epimera of the five anterior abdominal segments are described and figured as possessing only a posterior lappet, which is produced and spiniform while the anterior lappet is absent. This also may be due to age.

As regards the epimera of the sixth abdominal segment, Holt and Tattersall deseribe them as not united ventrally. We have seen above, under (i. gigues, that in young individuals (56 mum. long) these parts are not completely united in the median line, and thes it appears possible that fo. Alopumephora represents only a stage that is yomger yet than the youngest known specimen of G. gigus.
Lack of material of the young of G. gigas prevents the settlement of this yuestion finally, bat I an inclined to regard (i. drepuephome as the yomge stage of (r. gigues.
(r. drepurneph hom has been found off the western coast of Ireland, latitude I' $^{2} 27^{\prime} 190^{\prime \prime}$ north; longitude $15{ }^{\prime \prime} 40^{\prime}$ west, in 1,760 fathoms.

7. GNATHOPHAUSIA GRACILIS Willemoes-Suhm.

> Gnathophusiat gracilis Whlemoes-stan, Trans. Linn. Fuc. Lomton (z) 1, 187n, p. 33, pl. ix, fig. 1.-(i. O. Sars, Forh. Selsk. C'hristiania, 1sisi), no. 11; Rep. Challenger, XIII, 1885, p. 48, pl. vis, figs. 6-10.
> Gunthophensin grucilis var. brerispuis Woon-MAsen and Alcock, Amn. Nat. Hist. (6), VII, 1891, p. 188.

> Ginathophensia brecispinis Wood-Manos and Alcork, Ann. Nat. Hist. (i), VH, 1891, p. 269.-Faxon, Mem. Mus. Comp. Zoxl., N'1if, 1895, p. 216, pl. л.
> Ginuthophensia deututu Faxos, Bull. Mus. Comp. Zoul., NXIV, 1893, p, 217."

Carapace with keels and spines of the type of the first group, but upper lateral keel entirely absent. Lower lateral keel terminating in a spine at the postero-inferior angle of the carapace. There is another smaller spine just below this one, which is directed ontward and sometimes obsolete. Median keel interrupted. its posterior part with spiniform serrations. Postero-dorsal spine short. From the anterior ent of the posterior part of the dorsal keel a pair of ohlique keels rums forward and downward. Anterior part of torsal keel triangularly elevated mpon the gastric region, forming a prominent dentate crest, which extends forward to the rostrum. Supraocular spines small; antennal spines larger: hranchostegal spines rery large.

Antennal scale of the type of the second gromp, large, of usual shape, formed by a lancolate-orate lamella, the outer margin of which has a strong spine, which is servated at the outer edge and projects slightly beyond the terminal lobe of the lamellar part.

Abdomen of the general type of the second group. hut peculiar on account of the great development of dorsal spines. The first and second segments have each 2 large, triangular spines in the median line, the posterior of them at the posterior margin of the segment: the anterior spine of the first segment is generally smaller than the posterior. The following 3 segments (third to fifth) hawe each a posteriorly projecting spine on the posterior dorsal end. The two lappets of the epimera of the first to the fifth segments are short and pointed. the posterior slightly longer than the anterior.

Epimera of the sixth abdominal segment of the type of the second group, not united rentrally to form a rentral plate. There are 2 triangular, pointed epimeral lappets on each side of the anterior part of the sixth segment.

I do not entertain the slightest doubt that G. brenispimis WoodMason and Alcock, is identical with G. ! memeilis Suhm. Faxon" admits the following differences of G. Irevispinis from G. gracilis:

1. Prominent, dentate gilatric crest.
[^1]2 . Small size (or eren absence) of the lower spine of the posteroinferior angle of the carapace.
3. (ireat breadth of the antennal scale.
t. Pleura of first 4 abdominal segments expanded posteriorly.
5. A transverse fold separating the 2 dorsal spines of the second abdominal segment.
l have to make the following remarks as to these points:

1. Aecording to Willemoes-Suhm, the gastric region of G. yracilis has 2 small teeth in the median line; according to Sars, who examined the same individual, it is unarmed. This difterence is apparently due to the poor state of preservation of the Cluflenger specimen, and, as Sars"s figure is probably inaccurate in this respect, we can not depend on this character.
2. The lower spine of the postero-inferior angle of the carapace is certainly subject to variation. Faxon says that it is sometimes nearly or quite obsolete; my specimen, which agrees in most respects with G. brerispinis, has it well developed, although smaller than the upper spine and not quite so large as in Sars's figure. Consequently this character is not reliable.

In the width of the antennal scale I fail to observe any difference between Sars's (Plate VII, fig. S) and Faxon's (Plate J, fig. 1c) figures. In the latter, it may be slightly wider in the hasal part, hut this does not constitute a specific difference.

As to 4 and 5 we can not compare G. Irerixpimis with G. gracilis, as Sar's does not mention these characters. His figures, indeed, do not show the features given for (r. brerispming, but it must be borne in mind that this may be due to the poor condition of the Challenger specimen. My specimen agrees with G. brecispinis in these respects.
The very peculiar association of characters found in hoth of these species (which are supposed to be distinct) on account of which it is: necessury to place them hy themselves within the genus, renders it probable, from the start, that they are identical. The above considerations remove any probable necessity for their separation, and hence I have no hesitation in miting them in one species.

The size of Sars's specimen is 41 mm .; of Wood-Mason and Aleock's 82 and 92 mm .; Faxon gives 60 mm . My specimen is about 60 mm . long, and seems to be a male, since no traces of marsupial lamella are present. This species seems to attain a larger size, since the largest specimen known (92 mm .) was an "immature female with the last pair of incubatory lamella only 3 mm . long " (Wood-Mason).

Loculity.-[". A. Burean of Fisheries steamer Albatros.s station 3128-1 male. Ofl Central California; 627 fathoms.

Irerions. records.-Atlantic, between Africa and Brazil, latitude 122^{\prime} north, longitude $26^{\circ} 36^{\prime}$ west, 1,500 fathoms (Sars); Bay of Bengal, $920-690$ fathoms and 1,448 fathoms (Wood-Mason and
 Islands, 551, 1,189 , and 1,322 fathoms (Faxon).

If the specimen figured by Chun ${ }^{6}$ is this species, we hare to ardd: Gulf of Guinea, 4 , (k) meters.

8. GNATHOPHAUSIA LONGISPINA G. O. Sars.

(inuthophansin lomgispinu G. O. Surs, Forh. Selsk. Christiania, 1883 no. 10; Rep. Challenger, XIII, 188_{5}^{5}, p. 46, pl. vit, figs. $1-5$; pl. vit.-Ormanx, bunl. U. S. Fish Comm. for 1903, Pt. 3, 190.5, p. 969.

This species is not represented in the present material, but 1 had quite a number of specimens when I worked on the Hawaiian material, and thus I am able to gire a good account of it.

Carapace with keels of the type of the second gromp: An upper lateral keel is present; the lower lateral keel curves up behind, and rums toward the postero-dorsal spine. The dorsal keel is rontinuous, and projects as a long postero-dorsal spine. Rostrum long. Supraocular spines well developed; antennal spine ohsolete (rery small or even absent); bramehiostegal spine well marked and triangular. No posteroinferior spines, but posterior angles of carapace rounded off. (W ith the exception of the branchiostegal spine, the spines of the carapace are of the type of the second gromp.)

Antemal scale of the type of the second group, and remarkably long; the marginal spine is greatly produced, projecting considerably beyond the terminal lobe of the lamellar part, and serrated at both the inner and outer margins.

Abdomen of the type of the second gromp, with a small posteriorly projecting dorsal spine at the hind margin of each of the five anterior segments. Epimera of the five anterior segments with the two lappets acute, the anterior short and small, the posterior longer and spiniform: in the male, the posterior lappet of the second segment is greatly elongated, with a long spiniform tip; in the femate, it does not differ essentially from those of the other segments.

Epimera of sixth abdominal segment of the type of the second group, but there are two triangular, acute lappets on each side, as in G_{r}^{r}. grucilis.

The chief specific characters are: The presence of a bramchiostegal spine, the shape of the antemal sate, and the charator of the abdominal segments. The remarkable posterior lappet of the second abdominal segment is found only in the male sex, and thus males and females may be easily distinguished.

As I have demonstrated with the help of Hawaiam material, the rostrum, the dorsal and branchiostegal pines, and the marginal serrations of the antemal scale change with age, being more strongly developed in young indiriduals.
 long．Ny material from the Lawaiam Iskads consisted of 40 speci－ mens，the largest of which was a female， $6=\mathrm{mm}$ ．long，with the marsupial pouch fully dereloped．Since there were other females，in which at about the size of 50 mm ．the matrupial lamellae were well formed，it is probable that this species does not attain the gigantic dimensions seen in others．

Histribution．Otf Simboangan．Philippines，250 fathoms（Sars）． Not rame at the Iawaiiam Islands（found at 15 stations），near the islands of Oalan，Molokai，and in Kaiwi（hannel， $2 コ 2-4!s$ fathoms（Ortmam）．

9．GNATHOPHAUSIA ZOËA Willemoes－Suhm．

Plate 11 ，fig． $2 u, 2 \%$ ．
Gmuthophausia zö̈̆ Whlemoes－sunm，Nature，VIII，1873，p．401，fig．6；Trans． limn．Sire．London（2），I，1s75，p．32，pl．xix，figs．2－15；pl．x，fig．4．－A． Mhlee－EDwards，Rec．fig．Crust．nonv．，I，1883．－G．O．Sars，Rep．Chall．， Nill，1885，p．44，pl．vı，figs．6－10．－Faxon，Mem．Mus．Comp．Zool，X Vilit， 1895，p．215．－Carllery，Ann．Univ．Lyon，fa＊c．2，1896，p．368．－Alcock and Andersos，Amn．Nat．Hist．（7），IH1，1899，p．3．－Holt and Tattersall，Rel． Fisheries Ireland，II，Aply 4，1905，p．141．－Havsex，Bull．Mus．Monaco， ベざさ，1905，p． 5.
Gnathophausia millemoesi（r．O．Strs，Forh．Eelsk．Christiania，1883，no．6；Rep． Challenger，NIlI，1885，p．38，pl．r，figs．1－6．－Faxox，Mem．Mus．Comp． Zool．，XVill，1895，p．215，pl．k，fig．1．－－Ortmana，Bull．U．S．Fish．Comm． for 1903 ，P＇t．：3， 190 है，p． 969.

10．GNATHOPHAUSIA ZÖ̈A SARSI（Wood－Mason）．
Cinathophazsim sersi Woon－Mason，Amn．Nat．Mist．（6），VII，1891，p．187．－Ort－ MANN，Bull．U．S．Fish．Comm．for 1903，It．3，1905，p． 969.
The following are the characters of the species：
（arapate with keels and spines of the type of the second gromp： upper lateral keel present：lower lateral keel curved up behind：dorsal keel contimous．Rostrum，according to age，longer or shorter．Dorsal spine long in the young；shorter in the old．Supraocular and anten－ nal spines well developed；branchiostegal spine absent，and branchio－ stegal lobe rounded．No postero－inferior spines，but postero－inferior angle of carapace rombded off or（in the variety）rectangular，forming a barrow laminar expansion behind the marginal rim，which also couves upward．The carapace is not suddenly constricted in the anterior part．

Antemal scale of the type of the second group：large，spine of onter margin projecting slightly beyond the terminal lobe of lamellar part in the foung，slightly shorter than the latter in the old．Onter mar－ gin of spine slighty serrated in the young，smooth in the old．

Abdomen of the type of the seeond group：the five anterior seg－ monts domally indistinetly keoled，and prodnced into small spines at
the posterior margin. Epimera of the five anterior segments, with the anterior lappet small, the posterior produced and acutely pointed. There is, on each segment, an indistinct subdorsal keel on each side.

Epimera of sixth abdominal segment of the type of the second group, formed by only one triangular, acute lappet on each side of the anterior section of the segment, and not forming a vent ral phate.

The only difference of the rariety warsi from the typical form is found in the shape of the lamellar expansion of the postero-inferior angle of the carapace: in the typical form, this expansion is rounded off, while in the rariety it is rectangular. It is possible that the latter character is only restricted to the young, and that it generally disappears with adrancing age, but then it would disappear at different stages in different individuals, in the arerage, when they are about half grown (see below).

The identity of G. zoïn and G. millemoesi. - I have deroted much time to the study of the ditlerential characters of these two species, as determined by Sars (1585), and have the following to say with reference to them:

In Surssump of the species (p. 29), the length of the posterodorsal spine is paramount: it is "greatly produced" in G. aco"c, and "comparatively short" in (f. willemorsi.

The differences between the species, taken from Sars's diagnosis and description ($\mathrm{pp}, 38$ and 44) are the following:

1. The length of the postero-dorsal spine just mentioned: in (t.zoü this spine reaches sometimes beyond the fourth abdominal segment, while in (i. wellemoesi it is only slightly longer than the first abdominal segment.
2. The posterior margin of the carapare, and the margins of the postero-dorsal spine are "coarsely denticulate" in (i. zöct, and "decidedly glabrous" in fr. willommesi.
3. The rostrom is very clongate (even exceeding the canapace without posterior spine), and strongly denticulate in (i. ander: it is shorter than the earapace, and provided with small, comparatively few, denticles in Gr. willemmesi.
4. The spine of the antennal scale projects somewhat bepond the terminal lobe of the lamellar part, and is slightly denticulate at the outer edge, in G. znéc; it is a little shorter than the terminallobe, and not denticulate, in G. willemosesi.

Discussing these four points in detail:

1. Sars seems to lay much stress upon this character. I have shown. however, in several of the foregoing species, that the relative length of the spines of the carapace changes with age, being generally longer in young individuals. As regards the present case, G. aoia is founded upon specimens much younger than those of G. willemoesi. Moreover, I have extracted embryo from the marsupial pouch of a large
-pecimen (from station No. 2723 , about 105 mm. long), which undouhtedty belongs to fi. willomocximeording to surs conception, and these young ones (Plate If, tig. ${ }^{2}(1)$ have the postero-dorsal spine well developed, and comparatively much longer than any specimens ever described, extending to abont the maddle of the telson. Thus the length of the postero-dorsal spine depends without question on the age of the individual.
2. The denticulations or serrations of the posterior margin of the carapace the postero-dorsal spine, the spines of anterior margin of carapace and of the rostrmm are generally in this genus more distinct in younger individuals than in older ones. I have called attention to this above (under G. calcuruta). In the present case the large individual from station No. 2723, which is surely G. millemoesi, has the margin of the carapace not "decidedly glabrous," as Sars stater, hut there are a mumber of fine denticulations, less distinct than in young individuals. but easily seen. Faxon (1895) says that in G. willemersi there are denticulations along the margin of the dorsal spine. Thus this chaaracter does not hold.
3. That the relative length of the rostrum, like that of the spines of the carapace, changes with age is now well established. In the young specimens extracted from the pouch of the mother, the rostrum is decidedly tonger than the carapace (llate II, fig. 2a). If the rostrum becomes shorter with age it is not astonishing that the denticulations become less pronounced, and this is entrely in keeping with what I have shown in the second character. Thus the length of the rostrum does not possess any systematic value.
4. The fourth character needs special attention, but I think I am able to prove that it also is influenced by age. In young specimens the spine of the outer margin of the antemal scale is longer than the terminal lobe, and it is slightly servated on the outer edge. With increasing age it becomes slightly shorter than the termmal lobe, and the serrations disappear. The followng may be said in support of this riew:
". The specimens representing the original (i. anëa are small or of medium size (not longer than 70 mm .), while the specimens upon which (. . willemmesi was founded are very large, one measuring 136 mm ., and the other being "somewhat smaller;" that is to say, they were about double the size of G. zoëa.
b. A large specimen (Station No. 2T23) is about 105 mm . long, and has the antennal scale of (f^{\prime}. willemoesi; another (Station No. 4306) is 5 min. long, and has the antennal seale intermediate between G. aom and willomoesi; the spine is about as long as the lamellar portion on the left side and very slightly longer tham the latter on the right side, and it has on the outer margin very indistinet indications of serrations, visible only under the microscope. The latter specimm is
also intermatiate with regume to the characters 1.2, and .3. Younger individuals among the material examined by the writer possess insariably the antemal scale of G. an"m, but it must be added that the serrations of the outer margin are very fine. I can not see them with the naked eye, and an ordinary magnifying lens scarcely shows traces of them, but stronger instruments reveal them distinctly as sharp points for quite a distance along the margin of the spine.
c. Young specimens extracted from the marsupiun of a typical G. willemoesi have an antennal scale, which, in shape, is that of G. zoell, the marginal spine being longer than the lamellar portion. However, I could not ascertain the presence of serrations on the margin. Under the microscope, there is a kind of undulation of the margin, but no sharp, spiniform teeth. But this is not astonishing, since it is in keeping with the fact, that the serrations or dentienlations of rostrum and postero-dorsal spine are not present in these embryonic individuals, while ther are well developed in young specimens after they have left the marsupium.
d. Similar changes in the length of the spine of the antennal scale, due to age, have been fomed in another species, G. lomgispinn.

Thus, I think; the assumption well supported, that the characters given for G. zoia are only such as are due to the immaturity of the specimens, and that those assigned to G. willemoesi belong to the older stages of the same species. The name of G. zö"t has the priority over G. willemosesi.
G. sursi--For (i. sursi, the following differences from (i. millemoesi are given by Wood-Mason ${ }^{\text {a }}$.

1. The dorsal spine reaches to the posterior end of the third abdominal segment.
2. "Extreme edge (of carapace) expanded at the postero-inferior angle into a conspicnous rectangular lamina, into which neither its lower lateral keel nor its raised rim enters."
3. Upper half of the posterior margin of the carapace on each side and the lateral edges of the dorsal spine are minutely denticulated.
4. Five anterior abdominal segments with two subdorsal keels.
5. The telson is tricarinate, haring a fine median carina, and "appears to be more produced at the tip than in any other species."

The following remarks are to be made:

1. As I have already shown, the length of the dorsal spine can be disregarded: in the present case, the length agrees well with the size of Wood-Mason's sperimen: in the typical G. zoëc, not longer than 70 mm ., it reaches beyoud the fourth abdominal segment or falls short of it; in G. surrsi (75 mm .) it reaches to the end of the third segment; in one of our specimens, 88 mm . long, it reaches to the middle of the third segment; in another, about 105 mm . long, to the middle of the
recond; and in the type of ci. witlemesi, 136 mm . long, slightly beyond the first segment. In the larva before leaving the marsupiam, as has been saicl, it reathes to the middle of the telson, and thas the length of this spine entirely depends upon age.
\geq. The second is the most important character of G. sursi, and I find it in all the younger individuals at hand. The lower lateral keel, and also the marginal keel or rim, curve upward near the posteroinferior angle of the carapace; lout the actual margin of the carapace extends hehind the point, where the marginal rim legins to curve up, and runs for a short distance straight back; then it forms a right angle, extending toward the dorsal spine. Thus there is, behind the marginal rim, a "rectangular lamina" as described by Wood-Mason.

Sars does not mention such astructure, neither in G. willemoesi nor in (r. an"ü, he only says that the lower lateral keel curves upward before reaching the postero-inferior corner, and that the latter, in (r. willemonesi, is evenly rounded off. 1le does not mention the fact, that the marginal rim curves upward before reaching the posterior margin, and that there in a " lamina" behind the marginal rim. Such a lamina, howerer, is distinctly seen in Sars's figures of G. willemossi and zö̈ct (Plate V, fig. 1, and Plate VI, fig. 6). This is the more important, and clearly establishes the presence of this lamina in Sars's specimens, although he did not pay much attention to this feature, he gave a fair representation of it in the figures. The lamina, however, in both cases, is not rectangular, hut evenly rounded off.

Looking at the specimens at hand, I find that the largest, a typical willomoesi, represents this character as described and figured by Sars, only the lamina is somewhat wider than in his figure; but it is evenly rounded off. Exactly the same condition obtains in our sceond largest individual, 88 mm . long. From the Hawaiian lslands I have mentioned two sperimens of fr. willemoest, which I identified chiefly according to this character, which measure 73 and 52 mm . The largest individual observed by myself among the llawaiian materịal. possessed a rectangular lamina, and consequently was recorded under G. sarsi. It measured 62 mm . The smallest measured $3 \pm \mathrm{mm}$.
('onsidering that Wood-Mason's fr. sitesi was 7.5 mm. long, and that Sars's specimens of G a aëa, which have apparently a rounded lamina, were 70 mm . and lesw, the conclusion is reached that all speeimens hitherto observed that are over 75 mm . long, have this character derelopedaceording to the willemnesi type; all specimens smaller than 52 mm . hatwe it corresponding to the sursitype; specimens between 52 and 75 mm . may posess either a rectangular or a rounded lamina.
lont it can not he said positively that this character is due only to age. It may be that the rectangular lamina hecomes rounded with and ancing age, and that this transition takes place at a different period in different individnals, in the arerage, when they are about half grown
(50 to 70 mm .). But I am not quite sure of it, and so I prefer, for the present, to regard G. sumsi as a variety of G. anöl ($=$ millemosi). It should be mentioned that Faxon" thinks that (k. surse is "a form probably not specifically distinct from G. willemoesi."

The foung specimens extracted from the pouch of the old female show a distinct angle or point behind on eatch side of the carapace, but as the carapace is rather shapeless, being represented by a kind of a bage filled partly with oily or fatty substance (folk), it is imposisible to correlate these two small points with the infero-posterior corners of the earapace, although this correlation is very probable.
3. I have shown that the denticulation of the posterior margin of the carapace and of the dorsal spine does not constitute a specific character.
t. The subdorsal keels of the abdomen, mentioned by Wood-Mason, are present in all specimens at hand. They are formed by rather faint, blunt elevations, and I should not call them keels. They are easily overlooked, enpecially in poorly preserved material.
5. A thitd, fine median keel of the telson is distinctly seen in Surs's illustration of the telson of G_{r}. willemoesi (Plate V, fig. 6), and is present in all specimens examined by myself. On closer examination 1 find that this median keel is rather a fine double keel.

Wood-Mason's seatence that the telson "appears to be more produced at the tip than in any other species" is, as I have already remarked in the report on the Hawaiian Schizopods, muintelligible to me. I do not see any difference from other species in the shape of the telson.

Localities represented in the U.S. Sational Musenm.
from d. s. bureau of fisileries steamer illutross stations.
GNATHOPHAUSIA ZOEA,
2723-1 female (gravid). Between Nantucket and Cape Charles, 1,685 fathoms.
$4306-1$ male. Of sim l)iego. ('alifornia, 20t-497 fathoms.
GNATHOPHAUSIA ZOEA SARSI.
$2351-1$ young. Between Hawana and lucatan; 426 fathoms.
Irections recturls.
Typical forme as (i. zomen: West of Azores, 1,000 fathoms (Nims); Tropical Itlantic, $1^{\prime} 7^{\prime}$ North, $2 \pm 23{ }^{2}$ West, 1, 850 fathoms (Surs); of Brazil, Tro fathoms (Sars); L'acific, north of Kermadee Island, 6ou fathoms (Nars): ofl (ialapagos Islands, Bst and sisl fathoms (Faxon):

[^2]Bay of Biscay, soo-1, 20 meters (A. Milne-Edwards and Caullery): west coast of lreland, 382-600 fathoms (Holt and 'Tattersall); Azores, 1.000 meters (Hansen); near Maldive Islands, 430 fathoms (Alcock and Anderson). Typical form, as (r. willemoesi: Banda Sea, 1, t25 fathoms (Nars); (iulf of P'anama, 1.2 f0 fathoms (Faxon); off Acapulco, 493-66t fathoms (Fixon); 'Tres Marias Islands, 680 fathoms (Faxon); Hawaiian Islands, Molokai and Hawaii, 552-809 fathoms (Ortmamn).
(if. zö̈t sutsix: Bay of Bengal, sto fathoms (Wood- Mason); Hawaiian Islands, vicinity of Kauai and Modu Manu, 298-800 fathoms (Ortmann).

THE LARVAL FORM OF GNATHOPHAUSIA ZOËA.

As previonsly mentioned, among the material is a large female of this species, representing sars's form G. willemoesi, which has the marsupial pouch fully developed and filled with larva. Since larval stages of this genus have nerer been described, indeed, since nothing is known about the development, with the exception that on account of the presence of a marsupial pouch and in analogy to Lophoguster it is presumed that the development of the young form probably reaches a very adranced stage before it leaves the mother, it is advisable to give here a more detailed account of these young specimens.

The number of the young is 21 , a remarkably small number, but agrecing well with what we know about the number of the progeny of deep-sea animals. They are all miformly developed and represent a very adranced stage, in fact, they are no longer embryos, but have left the egg completely. Probably they were about ready to leawe the pouch of the mother, as all parts of the body had attained, in a general way, the condition found in the free swimming form.

Within the pouch the young Gnathophausiee are so arranged that they lie firmly packed together, the head of each directed toward the posterior and and the sternm of the mother, and the tail toward the anterior end of the mother, each overlapping in part the individual in front of it. That is to say, the heads are directed toward the bases. the tails toward the tips of the marsupial lamelle. The dorsal face of the larve is concave, the ventral face convex, corresponding to the curvature of the lamellae, since the back is turned toward the sternum of the mother, the rentral side toward the enveloping lamellie.

In each of the yomg ones (sce Plate II, fig. 2r) the hody is distinctly dwided into an anterior (thoracic) and posterior part, which forms a distinctly and completely segmented abdomen. The carapace is represented hy a bag-like excrescence, which is provided with distinct and long rostral and postero-dorsal spines. It is filled with the remnant of the yolk. Its keels are very indistinct, but there is a small point posteriorly on each side, possibly representing the postero-inferior corners of the carapace. The dorsal spine is long and closely
appressed to the back of the abdomen, and reaches as far as the middle of the telson. The rostrum is very long, longer than the carapace. It is bent down and appressed toward the rentral side, and directed backward. Neither rostrum nor dorsal spine show any serrations.

All appendages, except the eyes, are closely appressed to the ventral face of the body and are directed backward. In my figure they are not drawn in the natural position, but are slightly spread out and removed from the rentral side in order to show them more distinctly.

The eyes are well dereloped and of yellowish color. All other appendages resemble more or less those of the adult form, with the general exception that the hairs and bristles are absent or less developed and with the following special exceptions (compare Sars's Plate VIII):

The marginal spine of the antennal scale is longer than the laminar part and has no serrations on the outer margin.

The second maxilla possesses an additional joint at the end of the distal portion of the endognath (called "palp" by Sars, see his fig. 7^{p} on Plate VIII). This joint is very small, only about one-fifth as long as the preceding joint (the terminal one in the adult) and less than half as wide. (In the adult it seems to be fused with the penultimate joint, as is indicated by the shape of this joint in Sars's figure.) The "pigmented basal protuberance" (or luminous organ) is indicated in the larva.

The maxilliped resembles Sars's figure (Plate VIII, fig. S) and also has no exopodite, as is characteristic of the second group of the genns (excepting G. gracilis), but it is more slender, the third of the five free joints being not enlarged and about half as wide as in the adult G. longispina.

The gills are vestigial and less complex than in the adults.
The tip of the telson has not yet assumed the shape of the adult form (see Plate II, fig. 2b). It is not terminated by two strongly-curved spines forming an "almost semilmar" projection, but is terminated by a cordiform or, rather, reniform plate, which carries on each side a larger and a smaller spine and is finely denticulate at the posterior border. The marginal spines of the telson are more uniform than in the adult form, only a few smaller spines being found between the larger ones.

It appears that these larva come very near to the adult form, only the carapace remaining what might be called "embryonal" in shape. From the presence of a marsupial pouch it was to be expected that the young reach a high stage of development hefore being set free and dismissed from the mother's protection. As it happens this has been fully confirmed by the present study, the young contained in the pouch of the mother having passed completely through all embry-

Proc. N. M. vol. $x x x i-06-4$
onal stages and throngh almost all larval stages; they seem to be rady to lave the marappim, for it is clear that they need only to streteh out their appendages in order to be able to use them for free swimming.

II. GNATHOPHAUSIA SCAPULARIS, new species.

Plate I1, fig. But-3c.

Tipre emd cotype-LU. S. National Museum, 2 males. U. S. Burean of Fisheries steamer Albutross, Station No. 2992, Revillagigedo Islands, Lower California; 460 fathoms. (at. No. 32327 .

Near G. som̈c, but easily recognized by the anterior constriction of the carapace and the greatly expanded branchostegal lobes.

Shape of body rather stout. Carapace covering almost completely the first aldominal segment. Postero-dorsal spine indistinctly denticulate toward posterior margin of carapace, rather short, projecting to alront the middle of the second abdominal segment. Rostrum short, much shorter than carapace, denticulate. Supracular spines strong. Antemal spines small, but distinct. Branchiostegal spines wanting. All keels of carapace well developed. Median keel mininterrupted. Upper lateral keels strong, curved, includiug a lancoolate, almost plane upper fare of the carapace, widest anteriorly. Anterior ends of upper lateral keels strongly curved downard. In front of the anterior ends of these keels the carapace is suddenly constricted and depressed, thos forming a very marked shoulder on each side. This constriction affects greatly the course of the lower lateral keels, which suddenly begin to converge at a point just above the hranchiostegal lobes. Above this point and below the anterior end of the upper lateral keel there is an almost pit-like depression, which sends a slight groove upward, toward the median keel. For the rest, the lower lateral keel is similar to that of tro suri", imrving up behind toward the posterodorsal spine. It project-, however, in its whole length, considerably beyond the keel of the lower margin of the carapace. Thus the whole carapace becomes rather prismatic, almost hexangular. the upper face being flat, but interrupted ly the dorsal keel, and the lower surface being wanting (between the two lower margins): compare the eross section of the carapace, Plate II, fig. 3 c.

Branchiostegal lobes rounded, vanlt-shaped, and greatly expanded, rendering the carapace at this point as wide as in the middle, in spite of the great constriction above the branchiontegal lohes.

Abdomen rery similar to that of (6. zö̈d, practically identical with it. Five anterior segments slightly keeled dorsally, with a small, posteriorly projecting spine at the hind margin. On each side a blunt subdorsal keel. Epimerat with the anterior lappet small and rounded or slightly angular; the posterior lappet produced into a sharp spine.

There is a small spine at the base of the hasal joint of the pleopods (as in $(r$. zuëa). Only one epimeral spine on each side of anterior section of sixth abdominal segment.

All other parts are similar to the corresponding parts of $C_{\text {. }}$. zö̈n, but the antennal scale has the marginal spine considerably shorter than the terminal lobe, without serrations on the outer edge.

This rery remarkable speeies is so elosely allied to fi. aveu" that I should have taken the peculiar conformation of the carapue, cansed by the constriction of its anterior part, for a monstrosity, were it not for the fact that two individuals are at hand. The comparatively short spine of the antemal scale posisibly constitutes another specific character; in specimens of G. zoüa of the same size it is longer than the terminal lobe.

Both specimens are apparently males, since no traces of marsupial lamella are risible, and the coxopodite of the last pair of thoracic legs has, posteriorly, a small tubercle, which undoubtedly represents the male orifice.

Mecusurements of the types. - Total length of larger individual, 75 mm ; length from tip of rostrum to tip of posterior spine of carapace, 46 mm . Total length of smaller individual, about $\overline{0} 0 \mathrm{~mm}$., hut exact figures can not be given, since the rostrum is broken ofl near the base.

12. GNATHOPHAUSIA AFFINIS G. O. Sars.

Gmuthophausia a!finis G. O. Sars, Forh. Selsk. Christiania, 1883, no. 7; Rep. Challenger, XIII, 1885 , p. 41, pl. v, figs. 7-10.
I have never seen this species. It is very closely allied to (i. zoüc, and differs only in the following points:

1. Supraocular and antemal spines smaller, the latter almost obsolete. Branchiostegal lobe slightly angular, but having no spine.
2. Abdominal segments not keeled above, and possessing no dorsal projections or spines on the hind margin.
3. Posterior lappet of the epimera of the five anterior abdominal segments rounded, not spiniform.

Distribution: Only one specimen, a female, of this species is known up to the present time, the one taken by the Challenger in the tropical Atlantic Ocean, midway between A frica and Brazil (latitude 1 - 2e' north, longitude $23^{\circ} 36^{\prime}$ west), in 1,500 fathoms. It measared 81 mm .
13. GNATHOPHAUSIA ELEGANS G. O. Sars.

Ginathophausia clegoms (i. O. Sars, Rep. Challenger, XIII, 1885, p. 42, pl. vi, figs. 1-5.

Carapace with keels and spines of the type of the second group, but upper lateral keel absent. Lower lateral keel enrving up behind and much farther distant from the marginal rim than in G. zoëc. Dorsal
keel continuous. Rostrum and dorsal spine comparatively long. Supracoular spine well developed. Antennal spine very small, almost ohsolete. Branchiostegal lobe rounded or angular, hut withont spine. No postero-inferior spines. Marginal rim following closely the margin and leaving no laminar expansion at the postero-inferior corner. Carapace not constricted in anterior part.

Antemal scale of the type of the second group and very similar to that of the young (i. anain; it is large, and the spine on the outer margin is slightly longer than the lamimar portion. The outer edge with very minnte serrations in young specimens, smooth in older ones.

Abdomen of the type of the second group, at least in the young, but the five anterior segments without median keel, although with short, flattened, spiniform projections at posterior dorsal margin. In older individuals these dorsal projections are wanting. Epimera of all abdominal segments similar to those of G. zoëa.

The young specimen at hand differs from Sats's original description in the following particulars:

1. The carapace completely covers the trunk.
2. The rostrum and the postero-dorsal spine are longer.
3. Branchiostegal lobe not rounded, but angular.
t. Five anterior abdominal segments with flattened median posterior projection.
4. Spine of antennal scale finely serrated on outer margin.

The first, second, and fifth characters are of no consequence, since similar variations are found in other species, and are plainly due to state of preservation or to age. Our specimen is young, 48 mm . long, while Sars's was 56 mm .

The angular (triangular) shape of the bramehiostegal lobe (third character) differs markedly from what is seen in Sars's species, and the presence of flattened spines on the posterior margins of the abdominal segments (fourth character) might also be of importance. Since the present specimen is only the second individual of this species ever reported, I am not prepared to say whether these two characters are of specific or varietal value, or whether they simply constitute additional variations of age. Further material is necessary to decide this question.

Locality.-U. S. Bureau of Fisheries steamer Albatross Station No. 3697,1 young; off Honshu Island, Japan; 265 to 120 fathoms.

I'revious record.-South of Fiji Islands, 610 fathoms (Sars).

Family EUCOPIIDA (土. O. Sars.

14. EUCOPIA AUSTRALIS Dana.

Eucopia australis Dana, U. S. Expl. Exp. Crust., 1852, p. 609, pl. xl, fig. 10.Hansen, Bull. Mus. Monaco, XLII, 1905, p. 6.
The species of this genus have been largely confounded, as has been pointed out by Hansen. The following specimens all agree with E. australis Dana, as reidentified by that author. All my specimens are in poor state of preservation, but the eyes are present in all of them.

The distribution of this form can not be made out satisfactorily until the older material has been reexamined. It is known from the Antaretic Ocean (Dana, Hansen), and the present localities are of interest, since they extend the range into the northern Pacific and tropical Atlantic oceans.

Localities represented in the U.S. Natimal Nuseum.
from u. s. bureau of fisheries steamel Albatross stations.
2751.-1 young. Lesser Autilles, latitude $16^{\circ} 54^{\prime}$ north; longitude $633^{\wedge} 12^{\prime}$ west; 687 fathoms.
3308.-6 specimens (3 female, 3 young). Bering Sea, latitude 56° 12^{\prime} north; longitude $172^{\prime \prime} 07^{\prime}$ west; 1,625 fathoms.
$3604 .-1$ male. Bering Sea, latitude $5 t^{\circ} 5 t^{\prime}$ north; longitude 168° 59 west; 1,401 fathoms.
3696. - 1 young. Off Houshu Island, Japan; 501 to 749 fathoms.
3783.-1 female. Off Kamchatka; 1,54; fathoms.
4397. - 1 young. Off Santa C'atalina Islands, California; 2,196 to 2,228 fathoms.
4403.-2 females, 1 young. Off San Clemente Island, California; 505 to 599 fathoms.
15. EUCOPIA UNGUICULATA Willemoes-Suhm.

Eucopia unguiculuta Haviev, Bull. Mus. Monaco, XLII, 1905, p. 3.
A single individual, female, about 30 mm . long, belongs to this species. It is rather well preserved, and the characters pointed ont by Hansen for this species are present.

Locality.-The U. S. Burean of Fisheries steamer Allatrosis Station No. 4383, 1 female. Off North Coronado Island, California; 287 to 395 fathoms.

Found previonsly in the Athantic Ocean and East Indian Archipelago (Hansen).

EXPLANATION OF FIGURES.

Plate I.
Fig. Ia. Lophogastor spinosus, new species. Type from U. S. Bureau of Fisheries steamer Albutross Station No. 2666. View from above, 2 2.
Fig. 1b. The same. Lateral view of carapace, $2 / 1$.
Fig. ᄅu. (inuthophousitu calcuratu Sars. Epimeral plate of sixth abdominal segment of a specimen, 42 mm . long, from Station No. 3627, about 4/1.
Fig. $2 b$. The same, of a specimen, 55 mm . long, from Station No. 2980, about $4 / 1$.
Fig. 2c. The same, of a specimen, 68 mm . long, from Station No. 2929, about $4 / 1$.
Fig. 2d. The same, of a specimen, 81 mm . long, from Station No. 2919, about 3/1.
Fig. 2e. The same, of a specimen, 91 mm . long, from Station No. 4389 , about $3 / 1$.
Fig. $2 f$. The same, of a specimen, 115 mm . long, from Station No. 3670, about 3/1.

Plate II.

Fig. 1a. Gnathophausia gigus Suhm. Epimeral plate of sixth abdominal segment of a specimen, 56 mm . long, from Station No. 3329, about $4 / 1$.
Fig. 1b. The same, of a specimen, about 90 mm . long, from Station No. 2741, about 3/1.
Fig. 2u. Finathophausia zö̈a Suhm. Larva, extracted from marsupium of mother, from Station No. 2723 . Sile view, about $3 / 1$.
Fig. 2\%. The same, end of telson, greatly enlarged.
Fig. 3a. Guathophansia scupularis, new species. Type, from Station No. 2992. Lateral view of body, natural size.
Fig. $3 b$. The same. Upper view of carapace.
Fig. Sc. The same. Diagrammatic cross section of carapace at the level of the line $\mathrm{A}-\mathrm{B}$ in tig. 3%.

[^0]: a Bull. U. ト. Fish Comm. for 1903, 1905, p. 969.

[^1]: a The Gnathophamsia figured on the colored plate opposite p. 5on in Chun, A us den Tiefen des Weltmeeres, 1900, resembles this speeies, except fur the spine just back of the cervical groove.

 3 Mem. Mus. Comp. Zool., XVIIJ, 1895, p. 218.

[^2]: "Mem. Mus. Comp. Zcol., X V1H1, 1895, p. 215.

